Clothing polymer fibers with well-aligned and high-aspect ratio carbon nanotubes.
نویسندگان
چکیده
It is believed that the crucial step towards preparation of electrical conductive polymer-carbon nanotube (CNT) composites is dispersing CNTs with a high length-to-diameter aspect ratio in a well-aligned manner. However, this process is extremely challenging when dealing with long and entangled CNTs. Here in this study, a new approach is demonstrated to fabricate conductive polymer-CNT composite fibers without involving any dispersion process. Well-aligned CNT films were firstly drawn from CNT arrays, and then directly coated on polycaprolactone fibers to form polymer-CNT composite fibers. The conductivity of these composite fibers can be as high as 285 S m(-1) with only 2.5 wt% CNT loading, and reach 1549 S m(-1) when CNT loading is 13.4 wt%. As-prepared composite fibers also exhibit 82% retention of conductivity at a strain of 7%, and have improved mechanical properties.
منابع مشابه
Mechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملMechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملFabrication of high-aspect-ratio polymer microstructures and hierarchical textures using carbon nanotube composite master molds.
Scalable and cost effective patterning of polymer structures and their surface textures is essential to engineer material properties such as liquid wetting and dry adhesion, and to design artificial biological interfaces. Further, fabrication of high-aspect-ratio microstructures often requires controlled deep-etching methods or high-intensity exposure. We demonstrate that carbon nanotube (CNT) ...
متن کاملFabrication and application of polymer composites comprising carbon nanotubes.
Carbon nanotubes are being used in place of carbon fibers in making composites due to their high strength, high aspect-ratio and excellent thermal and electrical conductivity. Although carbon nanotubes were discovered more than a decade ago, works on preparation of satisfactory composites reinforced by carbon nanotubes have encountered difficulties. This review will discuss some registered pate...
متن کاملGiant piezoresistivity in aligned carbon nanotube nanocomposite: account for nanotube structural distortion at crossed tunnel junctions.
High piezoresistivity is critical for multifunctional carbon nanotube polymer composites with sensing capability. By developing a new percolation network model, this work reveals theoretically that a giant piezoresistivity in the composites can be potentially achieved by controlled nanotube alignment resulting from field based alignment techniques. The tube-tube and/or tube-matrix interaction i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 7 شماره
صفحات -
تاریخ انتشار 2013